12 research outputs found

    Modeling Supply Networks and Business Cycles as Unstable Transport Phenomena

    Full text link
    Physical concepts developed to describe instabilities in traffic flows can be generalized in a way that allows one to understand the well-known instability of supply chains (the so-called ``bullwhip effect''). That is, small variations in the consumption rate can cause large variations in the production rate of companies generating the requested product. Interestingly, the resulting oscillations have characteristic frequencies which are considerably lower than the variations in the consumption rate. This suggests that instabilities of supply chains may be the reason for the existence of business cycles. At the same time, we establish some link to queuing theory and between micro- and macroeconomics.Comment: For related work see http://www.helbing.or

    Age and growth of Spanish mackerel (Scomberomorus brasiliensis) off the northeastern coast of Brazil

    No full text
    Age and growth of the Spanish mackerel (Scomberomorus brasiliensis) caught off northeastern Brazil were determined. A total of 831 otoliths were examined - 296 from males (12 - 75 cm FL), 212 from females (11.5 - 72 cm FL) and 323 from specimens of undetermined sex (12.4 - 75 cm FL). There was a high percentage of juveniles in the catches, resulting mainly from the use of gillnets. Marginal increment analysis of the otoliths indicated that the shortest distances from the last ring to the edge occurred from November to May, laying down just one ring annually. One to eight rings were found, with specimen lengths ranging from 11.5 to 75.8 cm. The Schunute model was used to determine what model was best fit the data, demonstrating that the specialized von Bertalanffy growth equation is the most appropriate. Curves were established for males (L∞ = 79.52 cm, K = 0.189, t0 = -0.384 year) and females (L∞ = 109.18 cm, K = 0.114, t0 = -0.414 year), which resulted in distinct growth patterns between sexes. Based on the parameters estimated for the sexes separately, males have an approximate longevity of 15.5 years, whereas female longevity is 25.9 years. Specimens between 2 and 6 years of age represented 86% (n = 5,290) of the catch composition, characterizing the species as a catchable stock in the region. The present study updates essential information for assessing the stock of this important resource, for which the last growth studies in the region were carried out approximately thirty years ago

    Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design

    Get PDF
    Well-designed and effectively managed networks of marine reserves can be effective tools for both fisheries management and biodiversity conservation. Connectivity, the demographic linking of local populations through the dispersal of individuals as larvae, juveniles or adults, is a key ecological factor to consider in marine reserve design, since it has important implications for the persistence of metapopulations and their recovery from disturbance. For marine reserves to protect biodiversity and enhance populations of species in fished areas, they must be able to sustain focal species (particularly fishery species) within their boundaries, and be spaced such that they can function as mutually replenishing networks whilst providing recruitment subsidies to fished areas. Thus the configuration (size, spacing and location) of individual reserves within a network should be informed by larval dispersal and movement patterns of the species for which protection is required. In the past, empirical data regarding larval dispersal and movement patterns of adults and juveniles of many tropical marine species have been unavailable or inaccessible to practitioners responsible for marine reserve design. Recent empirical studies using new technologies have also provided fresh insights into movement patterns of many species and redefined our understanding of connectivity among populations through larval dispersal. Our review of movement patterns of 34 families (210 species) of coral reef fishes demonstrates that movement patterns (home ranges, ontogenetic shifts and spawning migrations) vary among and within species, and are influenced by a range of factors (e.g. size, sex, behaviour, density, habitat characteristics, season, tide and time of day). Some species move <0.1–0.5 km (e.g. damselfishes, butterflyfishes and angelfishes), <0.5–3 km (e.g. most parrotfishes, goatfishes and surgeonfishes) or 3–10 km (e.g. large parrotfishes and wrasses), while others move tens to hundreds (e.g. some groupers, emperors, snappers and jacks) or thousands of kilometres (e.g. some sharks and tuna). Larval dispersal distances tend to be <5–15 km, and self-recruitment is common. Synthesising this information allows us, for the first time, to provide species, specific advice on the size, spacing and location of marine reserves in tropical marine ecosystems to maximise benefits for conservation and fisheries management for a range of taxa. We recommend that: (i) marine reserves should be more than twice the size of the home range of focal species (in all directions), thus marine reserves of various sizes will be required depending on which species require protection, how far they move, and if other effective protection is in place outside reserves; (ii) reserve spacing should be <15 km, with smaller reserves spaced more closely; and (iii) marine reserves should include habitats that are critical to the life history of focal species (e.g. home ranges, nursery grounds, migration corridors and spawning aggregations), and be located to accommodate movement patterns among these. We also provide practical advice for practitioners on how to use this information to design, evaluate and monitor the effectiveness of marine reserve networks within broader ecological, socioeconomic and management contexts
    corecore